A semi-analytical scheme for highly oscillatory integrals over tetrahedra
نویسندگان
چکیده
منابع مشابه
Numerical methods for highly oscillatory integrals on semi-finite intervals
In highly oscillatory integrals, the integrand fw(x) oscillates rapidly with a frequency ω. For very high values of ω, numerical evaluation of such integrals by Gaussian quadrature rules can be of very low accuracy. In such problems which have many applications in mathematical physics, it is important to devise algorithms with errors which decrease as fast as w−N , for some N > 0. In this paper...
متن کاملQuadrature methods for highly oscillatory singular integrals
We study asymptotic expansions, Filon-type methods and complex-valued Gaussian quadrature for highly oscillatory integrals with power-law and logarithmic singularities. We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand, the stationary points and the endpoints of the integral. A truncated asymptotic expansion...
متن کاملNumerical Approximation of Highly Oscillatory Integrals
The purpose of this thesis is the numerical integration of highly oscillatory functions, over both univariate and multivariate domains. Oscillatory integrals have many applications, including solving oscillatory differential equations and acoustics. Such integrals have an unwarranted reputation for being difficult to compute. We will demonstrate that high oscillation is in fact beneficial: the ...
متن کاملThe Construction of cubature rules for multivariate highly oscillatory integrals
We present an efficient approach to evaluate multivariate highly oscillatory integrals on piecewise analytic integration domains. Cubature rules are developed that only require the evaluation of the integrand and its derivatives in a limited set of points. A general method is presented to identify these points and to compute the weights of the corresponding rule. The accuracy of the constructed...
متن کاملOn Quadrature Methods for Highly Oscillatory Integrals and Their Implementation
The main theme of this paper is the construction of efficient, reliable and affordable error bounds for two families of quadrature methods for highly oscillatory integrals. We demonstrate, using asymptotic expansions, that the error can be bounded very precisely indeed at the cost of few extra derivative evaluations. Moreover, in place of derivatives it is possible to use finite difference appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Engineering
سال: 2017
ISSN: 0029-5981
DOI: 10.1002/nme.5474